### FISH HABITAT ASSESSMENT **AND SIMULATION TOOL**

#### 17 April 2024

Peter N. Dudley<sup>1,2</sup>, Michael D. Porter<sup>3</sup>, Jesse A. Black<sup>1,2</sup>, Stephanie G. Diaz<sup>1,2</sup>, Ted W. Hermann<sup>1,2</sup>, Chris John<sup>1,2</sup>, Kwanmok Kim<sup>1,2</sup>

<sup>1</sup> Fisheries Collaborative Program, University of California Santa Cruz, Santa Cruz, CA, USA <sup>2</sup> Southwest Fisheries Science Center, NOAA Fisheries, Santa Cruz, CA, USA <sup>3</sup> U.S. Army Corps of Engineers, Sacramento District, Sacramento, CA USA





April 14-19, 2024

**National Conference on Ecosystem Restoration** 

Albuquerque, New Mexico



# FHAF



### FHAST FISH HABITAT ASSESSMENT AND SIMULATION TOOL

- National Marine Fishery Service
- Assess environmental effects
- Compare options
- Anadromous species
- Spatio-temporal data
- Agent-based model (ABM)





# **AGENT-BASED MODELS (ABM)**

- Simulation model  $\rightarrow$  virtual experimental systems
- "Bottom-up" modelling approach
- Agents can make fitness-related decisions resulting in life-like movement





### **FISH HABITAT FUNCTIONS**

- Hydrograph
- Hydraulics
- Fish metabolism
- Movement / migration
- Shade and cover
- Predation and survival





### **HYDROGRAPHS**



#### Pros

- Actual conditions
- No approximation work

Cons

- Unrepresentative
- Multiple inputs likely necessary
  Provide sample tables
  - Site specific
  - Time of different
    - Water years
    - Characteristic conditions





### HYDRAULICS

Depth Velocity

> Flow for this day (a number. e.g. 2147 cfs)





### **FHAST - FISH HABITAT**

• Depth and Velocity (RAS hydraulic model)



# **FHAST – FISH PARAMETERS**

- Migratory species:
  - Chinook Salmon
  - Steelhead
  - Green Sturgeon
- Critical swimming speed
- Size for out-migrating
  - Fork length
  - Mass
  - Condition
  - Metabolic rate





#### Environment



#### Agent

- Fork length
- Mass
- Condition
- Metabolic rate
- Energy intake
- Daily growth



### **Movement rules**

- Fish move once a day
- Fitness-based habitat selection strategy
- Condition vs probability of starvation
- Maximize energy intake or consider both energy intake and predation risks
- Respond to changes in their physiological state and environment by shifting their strategy

### **ADULT MIGRATION PATHFINDING**



- Fish moving upstream, and can choose cells either straight ahead or diagonally
- Diagonal moves are more expensive, all else equal, due to the longer distance
- Fish swim either at an optimal swim speed or a burst swim speed so that the upstream component of their velocity exceeds the water velocity



# **PATHFINDING RESULTS**

#### Mean flow: 200 m<sup>3</sup>/s



#### Mean flow: 600 m<sup>3</sup>/s



Less reliance on hugging the shoreline Fewer paths Greater reliance on shoreline More paths overall



### **COVER HABITAT**







# SOFTWARE REQUIREMENTS

- Open source public license, continual refinement
- HEC-RAS project area depth and velocity tiff files
- R / RStudio –scripts for data management and analysis
- NetLogo agent-based simulations
- QGIS open-source GIS tools based on GRASS
- FHAST-P repository (github.com/pndphd/FHAST-P)





### **OTHER AGENT-BASED MODELS**

#### YOLO BYPASS SALMON BENEFITS MODEL: Modeling the Benefits of Yolo Bypass Restoration Actions on Chinook Salmon

Model Documentation, Alternatives Analysis, and Effects Analysis







### QUESTIONS

